Shunhao Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
TAM of SCNU at SemEval-2023 Task 1: FCLL: A Fine-grained Contrastive Language-Image Learning Model for Cross-language Visual Word Sense Disambiguation
Qihao Yang | Yong Li | Xuelin Wang | Shunhao Li | Tianyong Hao
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Visual Word Sense Disambiguation (WSD), as a fine-grained image-text retrieval task, aims to identify the images that are relevant to ambiguous target words or phrases. However, the difficulties of limited contextual information and cross-linguistic background knowledge in text processing make this task challenging. To alleviate this issue, we propose a Fine-grained Contrastive Language-Image Learning (FCLL) model, which learns fine-grained image-text knowledge by employing a new fine-grained contrastive learning mechanism and enriches contextual information by establishing relationship between concepts and sentences. In addition, a new multimodal-multilingual knowledge base involving ambiguous target words is constructed for visual WSD. Experiment results on the benchmark datasets from SemEval-2023 Task 1 show that our FCLL ranks at the first in overall evaluation with an average H@1 of 72.56\% and an average MRR of 82.22\%. The results demonstrate that FCLL is effective in inference on fine-grained language-vision knowledge. Source codes and the knowledge base are publicly available at https://github.com/CharlesYang030/FCLL.