Shunguo Fan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Emotion classification on code-mixed text messages via soft prompt tuning
Jinghui Zhang | Dongming Yang | Siyu Bao | Lina Cao | Shunguo Fan
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Emotion classification on code-mixed text messages is challenging due to the multilingual languages and non-literal cues (i.e., emoticons). To solve these problems, we propose an innovative soft prompt tuning method, which is lightweight and effective to release potential abilities of the pre-trained language models and improve the classification results. Firstly, we transform emoticons into textual information to utilize their rich emotional information. Then, variety of innovative templates and verbalizers are applied to promote emotion classification. Extensive experiments show that transforming emoticons and employing prompt tuning both benefit the performance. Finally, as a part of WASSA 2023, we obtain the accuracy of 0.972 in track MLEC and 0.892 in track MCEC, yielding the second place in both two tracks.