This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ShubhamMohole
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Application systems using natural language interfaces to databases (NLIDBs) have democratized data analysis. This positive development has also brought forth an urgent challenge to help users who might use these systems without a background in statistical analysis to formulate bias-free analytical questions. Although significant research has focused on text-to-SQL generation accuracy, addressing cognitive biases in analytical questions remains underexplored. We present [VeriMinder](https://veriminder.ai), an interactive system for detecting and mitigating such analytical vulnerabilities. Our approach introduces three key innovations: (1) a contextual semantic mapping framework for biases relevant to specific analysis contexts (2) an analytical framework that operationalizes the Hard-to-Vary principle and guides users in systematic data analysis (3) an optimized LLM-powered system that generates high-quality, task-specific prompts using a structured process involving multiple candidates, critic feedback, and self-reflection.User testing confirms the merits of our approach. In direct user experience evaluation, 82.5% participants reported positively impacting the quality of the analysis. In comparative evaluation, VeriMinder scored significantly higher than alternative approaches, at least 20% better when considered for metrics of the analysis’s concreteness, comprehensiveness, and accuracy. Our system, implemented as a web application, is set to help users avoid “wrong question” vulnerability during data analysis. VeriMinder [code base](https://reproducibility.link/veriminder) with prompts is available as an MIT-licensed open-source software to facilitate further research and adoption within the community.
Rhetorical strategies are central to persuasive communication, from political discourse and marketing to legal argumentation. However, analysis of rhetorical strategies has been limited by reliance on human annotation, which is costly, inconsistent, difficult to scale. Their associated datasets are often limited to specific topics and strategies, posing challenges for robust model development. We propose a novel framework that leverages large language models (LLMs) to automatically generate and label synthetic debate data based on a four-part rhetorical typology (causal, empirical, emotional, moral). We fine-tune transformer-based classifiers on this LLM-labeled dataset and validate its performance against human-labeled data on this dataset and on multiple external corpora. Our model achieves high performance and strong generalization across topical domains. We illustrate two applications with the fine-tuned model: (1) the improvement in persuasiveness prediction from incorporating rhetorical strategy labels, and (2) analyzing temporal and partisan shifts in rhetorical strategies in U.S. Presidential debates (1960–2020), revealing increased use of affective over cognitive argument in U.S. Presidential debates.
Large Language Models (LLMs) have shown proficiency in generating persuasive dialogue, yet concerns about the fluency and sophistication of their outputs persist. This paper presents a multi-LLM communication framework designed to enhance the generation of persuasive data automatically. This framework facilitates the efficient production of high-quality, diverse linguistic content with minimal human oversight. Through extensive evaluations, we demonstrate that the generated data excels in naturalness, linguistic diversity, and the strategic use of persuasion, even in complex scenarios involving social taboos. The framework also proves adept at generalizing across novel contexts. Our results highlight the framework’s potential to significantly advance research in both computational and social science domains concerning persuasive communication.