Shuaihong Jiang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Accelerating Adaptive Retrieval Augmented Generation via Instruction-Driven Representation Reduction of Retrieval Overlaps
Jie Ou | Jinyu Guo | Shuaihong Jiang | Zhaokun Wang | Libo Qin | Shunyu Yao | Wenhong Tian
Findings of the Association for Computational Linguistics: ACL 2025

Retrieval-augmented generation (RAG) has emerged as a pivotal method for expanding the knowledge of large language models. To handle complex queries more effectively, researchers developed Adaptive-RAG (A-RAG) to enhance the generated quality through multiple interactions with external knowledge bases. Despite its effectiveness, A-RAG exacerbates the pre-existing efficiency challenges inherent in RAG, which are attributable to its reliance on multiple iterations of generation. Existing A-RAG approaches process all retrieved contents from scratch. However, they ignore the situation where there is a significant overlap in the content of the retrieval results across rounds. The overlapping content is redundantly represented, which leads to a large proportion of repeated computations, thus affecting the overall efficiency. To address this issue, this paper introduces a model-agnostic approach that can be generally applied to A-RAG methods, which is dedicated to reducing the redundant representation process caused by the overlapping of retrieval results. Specifically, we use cache access and parallel generation to speed up the prefilling and decoding stages respectively. Additionally, we also propose an instruction-driven module to further guide the model to more effectively attend to each part of the content in a more suitable way for LLMs. Experiments show that our approach achieves 2.79 and 2.33 times significant acceleration on average for prefilling and decoding respectively while maintaining equal generation quality.