Shohreh Deldari


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition
Zechen Li | Shohreh Deldari | Linyao Chen | Hao Xue | Flora D. Salim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We introduce SensorLLM, a two-stage framework that enables Large Language Models (LLMs) to perform human activity recognition (HAR) from sensor time-series data. Despite their strong reasoning and generalization capabilities, LLMs remain underutilized for motion sensor data due to the lack of semantic context in time-series, computational constraints, and challenges in processing numerical inputs. SensorLLM addresses these limitations through a Sensor-Language Alignment stage, where the model aligns sensor inputs with trend descriptions. Special tokens are introduced to mark channel boundaries. This alignment enables LLMs to capture numerical variations, channel-specific features, and data of varying durations, without requiring human annotations. In the subsequent Task-Aware Tuning stage, we refine the model for HAR classification, achieving performance that matches or surpasses state-of-the-art methods. Our results demonstrate that SensorLLM evolves into an effective sensor learner, reasoner, and classifier through human-intuitive Sensor-Language Alignment, generalizing across diverse HAR datasets. We believe this work establishes a foundation for future research on time-series and text alignment, paving the way for foundation models in sensor data analysis. Our codes are available at https://github.com/zechenli03/SensorLLM.