Shixiang Tang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System
Haoyang Su | Renqi Chen | Shixiang Tang | Zhenfei Yin | Xinzhe Zheng | Jinzhe Li | Biqing Qi | Qi Wu | Hui Li | Wanli Ouyang | Philip Torr | Bowen Zhou | Nanqing Dong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The rapid advancement of scientific progress requires innovative tools that can accelerate knowledge discovery. Although recent AI methods, particularly large language models (LLMs), have shown promise in tasks such as hypothesis generation and experimental design, they fall short of replicating the collaborative nature of real-world scientific practices, where diverse experts work together in teams to tackle complex problems. To address the limitations, we propose an LLM-based multi-agent system, i.e., Virtual Scientists (VIRSCI), designed to mimic the teamwork inherent in scientific research. VIRSCI organizes a team of agents to collaboratively generate, evaluate, and refine research ideas. Through comprehensive experiments, we demonstrate that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas. We further investigate the collaboration mechanisms that contribute to its tendency to produce ideas with higher novelty, offering valuable insights to guide future research and illuminating pathways toward building a robust system for autonomous scientific discovery. The code is available at https://github.com/open-sciencelab/Virtual-Scientists.