Shiqiao Gu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit
Ruihao Gong | Yang Yong | Shiqiao Gu | Yushi Huang | Chengtao Lv | Yunchen Zhang | Dacheng Tao | Xianglong Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Recent advancements in large language models (LLMs) are propelling us toward artificial general intelligence with their remarkable emergent abilities and reasoning capabilities. However, the substantial computational and memory requirements limit the widespread adoption. Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating LLMs, albeit with potential risks to accuracy. Numerous studies have aimed to minimize the accuracy loss associated with quantization. However, their quantization configurations vary from each other and cannot be fairly compared. In this paper, we present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization. LLMC integrates dozens of algorithms, models, and hardware, offering high extensibility from integer to floating-point quantization, from LLM to vision-language (VLM) model, from fixed-bit to mixed precision, and from quantization to sparsification. Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats, providing novel insights and detailed analyses for further research and practical guidance for users. Our toolkit is available at https://github.com/ModelTC/llmc.