Shilong Wang

Papers on this page may belong to the following people: Shilong Wang, Shilong Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models
Weixiang Zhao | Shilong Wang | Yulin Hu | Yanyan Zhao | Bing Qin | Xuanyu Zhang | Qing Yang | Dongliang Xu | Wanxiang Che
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world. Existing methods devise the learning module to acquire task-specific knowledge with parameter-efficient tuning (PET) block and the selection module to pick out the corresponding one for the testing input, aiming at handling the challenges of catastrophic forgetting and knowledge transfer in CL. However, these methods tend to address only one of the challenges, ignoring the potential of aligning the two modules to effectively address catastrophic forgetting and knowledge transfer simultaneously. To this end, we propose a novel Shared Attention Framework (SAPT), to align the PET learning and selection via the Shared Attentive Learning & Selection module. Extensive Experiments on two CL benchmarks demonstrate the superiority of SAPT. Moreover, SAPT consistently demonstrates its superiority when we scale it to different model sizes (from 770M to 13B), different model architectures (T5 and LLaMA-2) and unseen tasks.

2006

pdf bib
Reranking Answers for Definitional QA Using Language Modeling
Yi Chen | Ming Zhou | Shilong Wang
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics