Shibo Hong


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Combining Impression Feature Representation for Multi-turn Conversational Question Answering
Shaoling Jing | Shibo Hong | Dongyan Zhao | Haihua Xie | Zhi Tang
Proceedings of the 19th Chinese National Conference on Computational Linguistics

Multi-turn conversational Question Answering (ConvQA) is a practical task that requires the understanding of conversation history, such as previous QA pairs, the passage context, and current question. It can be applied to a variety of scenarios with human-machine dialogue. The major challenge of this task is to require the model to consider the relevant conversation history while understanding the passage. Existing methods usually simply prepend the history to the current question, or use the complicated mechanism to model the history. This article proposes an impression feature, which use the word-level inter attention mechanism to learn multi-oriented information from conversation history to the input sequence, including attention from history tokens to each token of the input sequence, and history turn inter attention from different history turns to each token of the input sequence, and self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the proposed method on the QuAC dataset, analyze the impact of different feature selection methods, and verify the validity and reliability of the proposed features through visualization and human evaluation.