This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ShashaLi
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large language models (LLMs) generate human-aligned content under certain safety constraints. However, the current known technique “jailbreak prompt” can circumvent safety-aligned measures and induce LLMs to output malicious content. Research on Jailbreaking can help identify vulnerabilities in LLMs and guide the development of robust security frameworks. To circumvent the issue of attack templates becoming obsolete as models evolve, existing methods adopt iterative mutation and dynamic optimization to facilitate more automated jailbreak attacks. However, these methods face two challenges: inefficiency and repetitive optimization, as they overlook the value of past attack experiences. To better integrate past attack experiences to assist current jailbreak attempts, we propose the JailExpert, an automated jailbreak framework, which is the first to achieve a formal representation of experience structure, group experiences based on semantic drift, and support the dynamic updating of the experience pool. Extensive experiments demonstrate that JailExpert significantly improves both attack effectiveness and efficiency. Compared to the current state-of-the-art black-box jailbreak method, JailExpert achieves an average increase of 24% in attack success rate and 2.7 times improvement in attack efficiency.
Open-domain timeline summarization (TLS) faces challenges from information overload and data sparsity when processing large-scale textual streams. Existing methods struggle to capture coherent event narratives due to fragmented descriptions and often accumulate noise through iterative retrieval strategies that lack effective relevance evaluation. This paper proposes: Reflective Retrieval-Augmented Timeline Summarization with Causal-Semantic Intergration, which offers a novel perspective for open-domain TLS by time point completion and event element completion. R2A-TLS establishes an initial retrieval, reflection, and deep retrieval system that reduces noise through a double filtering mechanism that iteratively generates a timeline for each text which passes the filtering. Then, the system reflects on the initial timeline with the aim of identifying information gaps through causal chain analysis and FrameNet based element validation. These gaps are reformulated into targeted queries to trigger deep retrieval for refining timeline coherence and density. Empirical evaluation on Open-TLS dataset reveals that our approach outperforms the best prior published approaches.
Citing comprehensively and appropriately has become a challenging task with the explosive growth of scientific publications. Current citation recommendation systems aim to recommend a list of scientific papers for a given text context or a draft paper. However, none of the existing work focuses on already included citations of full papers, which are imperfect and still have much room for improvement. In the scenario of peer reviewing, it is a common phenomenon that submissions are identified as missing vital citations by reviewers. This may lead to a negative impact on the credibility and validity of the research presented. To help improve citations of full papers, we first define a novel task of Recommending Missed Citations Identified by Reviewers (RMC) and construct a corresponding expert-labeled dataset called CitationR. We conduct an extensive evaluation of several state-of-the-art methods on CitationR. Furthermore, we propose a new framework RMCNet with an Attentive Reference Encoder module mining the relevance between papers, already-made citations, and missed citations. Empirical results prove that RMC is challenging, with the proposed architecture outperforming previous methods in all metrics. We release our dataset and benchmark models to motivate future research on this challenging new task.
Few-shot named entity recognition (NER) enables us to build a NER system for a new domain using very few labeled examples. However, existing prototypical networks for this task suffer from roughly estimated label dependency and closely distributed prototypes, thus often causing misclassifications. To address the above issues, we propose EP-Net, an Entity-level Prototypical Network enhanced by dispersedly distributed prototypes. EP-Net builds entity-level prototypes and considers text spans to be candidate entities, so it no longer requires the label dependency. In addition, EP-Net trains the prototypes from scratch to distribute them dispersedly and aligns spans to prototypes in the embedding space using a space projection. Experimental results on two evaluation tasks and the Few-NERD settings demonstrate that EP-Net consistently outperforms the previous strong models in terms of overall performance. Extensive analyses further validate the effectiveness of EP-Net.
Multi-Document Scientific Summarization (MDSS) aims to produce coherent and concise summaries for clusters of topic-relevant scientific papers. This task requires precise understanding of paper content and accurate modeling of cross-paper relationships. Knowledge graphs convey compact and interpretable structured information for documents, which makes them ideal for content modeling and relationship modeling. In this paper, we present KGSum, an MDSS model centred on knowledge graphs during both the encoding and decoding process. Specifically, in the encoding process, two graph-based modules are proposed to incorporate knowledge graph information into paper encoding, while in the decoding process, we propose a two-stage decoder by first generating knowledge graph information of summary in the form of descriptive sentences, followed by generating the final summary. Empirical results show that the proposed architecture brings substantial improvements over baselines on the Multi-Xscience dataset.
Span-based joint extraction models have shown their efficiency on entity recognition and relation extraction. These models regard text spans as candidate entities and span tuples as candidate relation tuples. Span semantic representations are shared in both entity recognition and relation extraction, while existing models cannot well capture semantics of these candidate entities and relations. To address these problems, we introduce a span-based joint extraction framework with attention-based semantic representations. Specially, attentions are utilized to calculate semantic representations, including span-specific and contextual ones. We further investigate effects of four attention variants in generating contextual semantic representations. Experiments show that our model outperforms previous systems and achieves state-of-the-art results on ACE2005, CoNLL2004 and ADE.