Sharefah Ahmed Al-Ghamdi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
A Novel Approach for Root Selection in the Dependency Parsing
Sharefah Ahmed Al-Ghamdi | Hend Al-Khalifa | Abdulmalik AlSalman
Proceedings of the 6th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT) with Shared Tasks on Arabic LLMs Hallucination and Dialect to MSA Machine Translation @ LREC-COLING 2024

Although syntactic analysis using the sequence labeling method is promising, it can be problematic when the labels sequence does not contain a root label. This can result in errors in the final parse tree when the postprocessing method assumes the first word as the root. In this paper, we present a novel postprocessing method for BERT-based dependency parsing as sequence labeling. Our method leverages the root’s part of speech tag to select a more suitable root for the dependency tree, instead of using the default first token. We conducted experiments on nine dependency treebanks from different languages and domains, and demonstrated that our technique consistently improves the labeled attachment score (LAS) on most of them.