Shaozhen Shi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Choosy Babies Need One Coach: Inducing Mode-Seeking Behavior in BabyLlama with Reverse KL Divergence
Shaozhen Shi | Yevgen Matusevych | Malvina Nissim
The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning

This study presents our submission to the Strict-Small Track of the 2nd BabyLM Challenge. We use a teacher-student distillation setup with the BabyLLaMa model (Timiryasov and Tastet, 2023) as a backbone. To make the student’s learning process more focused, we replace the objective function with a reverse Kullback-Leibler divergence, known to cause mode-seeking (rather than mode-averaging) behaviour in computational learners. We further experiment with having a single teacher (instead of an ensemble of two teachers) and implement additional optimization strategies to improve the distillation process. Our experiments show that under reverse KL divergence, a single-teacher model often outperforms or matches multiple-teacher models across most tasks. Additionally, incorporating advanced optimization techniques further enhances model performance, demonstrating the effectiveness and robustness of our proposed approach. These findings support our idea that “choosy babies need one coach”.