Shaokang Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Target-Adaptive Consistency Enhanced Prompt-Tuning for Multi-Domain Stance Detection
Shaokang Wang | Li Pan
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Stance detection is a fundamental task in Natural Language Processing (NLP). It is challenging due to diverse expressions and topics related to the targets from multiple domains. Recently, prompt-tuning has been introduced to convert the original task into a cloze-style prediction task, achieving impressive results. Many prompt-tuning-based methods focus on one or two classic scenarios with concrete external knowledge enhancement. However, when facing intricate information in multi-domain stance detection, these methods cannot be adaptive to multi-domain semantics. In this paper, we propose a novel target-adaptive consistency enhanced prompt-tuning method (TCP) for stance detection with multiple domains. TCP incorporates target knowledge and prior knowledge to construct target-adaptive verbalizers for diverse domains and employs pilot experiments distillation to enhance the consistency between verbalizers and model training. Specifically, to capture the knowledge from multiple domains, TCP uses a target-adaptive candidate mining strategy to obtain the domain-related candidates. Then, TCP refines them with prior attributes to ensure prediction consistency. The Pre-trained Language Models (PLMs) in prompt-tuning are with large-scale parameters, while only changing the verbalizer without corresponding tuning has a limited impact on the training process. Target-aware pilot experiments are conducted to enhance the consistency between the verbalizer and training by distilling the target-adaptive knowledge into prompt-tuning. Extensive experiments and ablation studies demonstrate that TCP outperforms the state-of-the-art methods on nine stance detection datasets from multiple domains.