This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ShaoguangMao
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Language is not monolithic. While benchmarks, including those designed for multiple languages, are often used as proxies to evaluate the performance of Large Language Models (LLMs), they tend to overlook the nuances of within-language variation and thus fail to model the experience of speakers of non-standard dialects. Focusing on African American Vernacular English (AAVE), we present the first study aimed at objectively assessing the fairness and robustness of LLMs in handling dialects across canonical reasoning tasks, including algorithm, math, logic, and integrated reasoning. We introduce **ReDial** (**Re**asoning with **Dial**ect Queries), a benchmark containing 1.2K+ parallel query pairs in Standardized English and AAVE. We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks,such as HumanEval and GSM8K. With ReDial, we evaluate widely used LLMs, including GPT, Claude, Llama, Mistral, and the Phi model families. Our findings reveal that almost all of these widely used models show significant brittleness and unfairness to queries in AAVE. Our work establishes a systematic and objective framework for analyzing LLM bias in dialectal queries. Moreover, it highlights how mainstream LLMs provide unfair service to dialect speakers in reasoning tasks, laying a critical foundation for future research.
Multiple-choice question (MCQ) datasets like Massive Multitask Language Understanding (MMLU) are widely used to evaluate the commonsense, understanding, and problem-solving abilities of large language models (LLMs). However, the open-source nature of these benchmarks and the broad sources of training data for LLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation. To alleviate this issue, we propose the contamination-free MCQ benchmark called MMLU-CF, which reassesses LLMs’ understanding of world knowledge by averting both unintentional and malicious data contamination. To mitigate unintentional data contamination, we source questions from a broader domain of over 200 billion webpages and apply three specifically designed decontamination rules. To prevent malicious data contamination, we divide the benchmark into validation and test sets with similar difficulty and subject distributions. The test set remains closed-source to ensure reliable results, while the validation set is publicly available to promote transparency and facilitate independent evaluation. The performance gap between these two sets of LLMs will indicate the contamination degree on the validation set in the future. We evaluated over 40 mainstream LLMs on the MMLU-CF. Compared to the original MMLU, not only LLMs’ performances significantly dropped but also the performance rankings of them changed considerably. This indicates the effectiveness of our approach in establishing a contamination-free and fairer evaluation standard.
Implementing new features in repository-level codebases is a crucial application of code generation models. However, current benchmarks lack a dedicated evaluation framework for this capability. To fill this gap, we introduce FEA-Bench, a benchmark designed to assess the ability of large language models (LLMs) to perform incremental development within code repositories. We collect pull requests from 83 GitHub repositories and use rule-based and intent-based filtering to construct task instances focused on new feature development. Each task instance containing code changes is paired with relevant unit test files to ensure that the solution can be verified. The feature implementation requires LLMs to simultaneously possess code completion capabilities for new components and code editing abilities for other relevant parts in the code repository, providing a more comprehensive evaluation method of LLMs’ automated software engineering capabilities.Experimental results show that LLMs perform significantly worse in the FEA-Bench, highlighting considerable challenges in such repository-level incremental code development.
Game theory is a branch of mathematics that studies strategic interactions among rational agents. We propose Alympics (Olympics for Agents), a systematic framework utilizing Large Language Model (LLM) agents for empirical game theory research. Alympics creates a versatile platform for studying complex game theory problems, bridging the gap between theoretical game theory and empirical investigations by providing a controlled environment for simulating human-like strategic interactions with LLM agents. In our pilot case study, the “Water Allocation Challenge”, we explore Alympics through a challenging strategic game focused on the multi-round auction of scarce survival resources. This study demonstrates the framework’s ability to qualitatively and quantitatively analyze game determinants, strategies, and outcomes. Additionally, we conduct a comprehensive human assessment and an in-depth evaluation of LLM agents in rational strategic decision-making scenarios. Our findings highlight LLM agents’ potential to advance game theory knowledge and expand the understanding of their proficiency in emulating human strategic behavior.
Strategic reasoning is a complex yet essential capability for intelligent agents. It requires Large Language Model (LLM) agents to adapt their strategies dynamically in multi-agent environments. Unlike static reasoning tasks, success in these contexts depends on anticipating other agents’ beliefs and actions while continuously adjusting strategies to achieve individual goals. LLMs and LLM agents often struggle with strategic reasoning due to the absence of a reasoning framework that enables them to dynamically infer others’ perspectives and adapt to changing environments. Inspired by the Level-K framework from game theory and behavioral economics, which extends reasoning from simple reactions to structured strategic depth, we propose a novel framework: “K-Level Reasoning with Large Language Models (K-R).” This framework employs recursive mechanisms to enable LLMs to achieve varying levels of strategic depth, allowing agents to form higher order beliefs—beliefs about others’ beliefs. We validate this framework through rigorous testing on four testbeds: two classical game theory problems and two social intelligence tasks. The results demonstrate the advantages of K-R in strategic reasoning. Our work presents the first recursive implementation of strategic depth in large language models (LLMs). It establishes a foundation for future research into theory of mind and strategic reasoning in LLMs.
“Rhetoric is fundamental to the reading comprehension and writing skills of primary and middle school students. However, current work independently recognize single coarse-grained categories or fine-grained categories. In this paper, we propose the CCL24-Eval Task6: Chinese Essay Rhetoric Recognition and Understanding (CERRU), consisting of 3 tracks: (1) Fine-grained Form-level Categories Recognition, (2) Fine-grained Content-level Categories Recognition and (3) Rhetorical Component Extraction. A total of 32 teams registered to participate in CERRU and 9 teams submitted evaluation results, with 7 of these teams achieving an overall score that surpassed the baseline.”
“This paper presents a detailed review of Task 7 in the CCL24-Eval: the second Chinese Essay Fluency Evaluation (CEFE). The task aims to identify fine-grained grammatical errors that impair readability and coherence in essays authored by Chinese primary and secondary school students, evaluate the essays’ fluency levels, and recommend corrections to improve their written fluency. The evaluation comprises three tracks: (1) Coarse-grained and fine-grained error identification; (2) Error sentence rewriting; and (3) Essay Fluency Level Recognition. We garnered 29 completed registrations, resulting in 180 submissions from 10 dedicated teams. The paper discusses the submissions and analyzes the results from all participating teams.”
Chinese Spelling Correction (CSC) commonly lacks large-scale high-quality corpora, due to the labor-intensive labeling of spelling errors in real-life human writing or typing scenarios. Two data augmentation methods are widely adopted: (1) *Random Replacement* with the guidance of confusion sets and (2) *OCR/ASR-based Generation* that simulates character misusing. However, both methods inevitably introduce noisy data (e.g., false spelling errors), potentially leading to over-correction. By carefully analyzing the two types of corpora, we find that though the latter achieves more robust generalization performance, the former yields better-calibrated CSC models. We then provide a theoretical analysis of this empirical observation, based on which a corpus refining strategy is proposed. Specifically, OCR/ASR-based data samples are fed into a well-calibrated CSC model trained on random replacement-based corpora and then filtered based on prediction confidence. By learning a simple BERT-based model on the refined OCR/ASR-based corpus, we set up impressive state-of-the-art performance on three widely-used benchmarks, while significantly alleviating over-correction (e.g., lowering false positive predictions).
Grammatical Error Correction (GEC) is a crucial technique in Automated Essay Scoring (AES) for evaluating the fluency of essays. However, in Chinese, existing GEC datasets often fail to consider the importance of specific grammatical error types within compositional scenarios, lack research on data collected from native Chinese speakers, and largely overlook cross-sentence grammatical errors. Furthermore, the measurement of the overall fluency of an essay is often overlooked. To address these issues, we present CEFA (Chinese Essay Fluency Assessment), an extensive corpus that is derived from essays authored by native Chinese-speaking primary and secondary students and encapsulates essay fluency scores along with both coarse and fine-grained grammatical error types and corrections. Experiments employing various benchmark models on CEFA substantiate the challenge of our dataset. Our findings further highlight the significance of fine-grained annotations in fluency assessment and the mutually beneficial relationship between error types and corrections
Human intelligence thrives on cognitive synergy, where collaboration among different minds yield superior outcomes compared to isolated individuals. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist is an intelligent agent that collaboratively combines multiple minds’ strengths and knowledge to enhance problem-solving in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. Our in-depth analysis shows that assigning multiple fine-grained personas in LLMs improves problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, experimental results demonstrate that SPP effectively reduces factual hallucination, and maintains strong reasoning capabilities. Additionally, comparative experiments show that cognitive synergy only emerges in GPT-4 and does not appear in less capable models, such as GPT-3.5-turbo and Llama2-13b-chat, which draws an interesting analogy to human development. Code, data, and prompts can be found at: https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Utilizing Large Language Models (LLMs) for complex tasks is challenging, often involving a time-consuming and uncontrollable prompt engineering process. This paper introduces a novel human-LLM interaction framework, Low-code LLM. It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses. Through visual interaction with a graphical user interface, users can incorporate their ideas into the process without writing trivial prompts. The proposed Low-code LLM framework consists of a Planning LLM that designs a structured planning workflow for complex tasks, which can be correspondingly edited and confirmed by users through low-code visual programming operations, and an Executing LLM that generates responses following the user-confirmed workflow. We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability. We demonstrate its benefits using four typical applications. By introducing this framework, we aim to bridge the gap between humans and LLMs, enabling more effective and efficient utilization of LLMs for complex tasks. The code, prompts, and experimental details are available at https://github.com/moymix/TaskMatrix/tree/main/LowCodeLLM. A system demonstration video can be found at https://www.youtube.com/watch?v=jb2C1vaeO3E.
“This paper provides a comprehensive review of the CCL23-Eval Task 8, i.e., Chinese EssayFluency Evaluation (CEFE). The primary aim of this task is to systematically identify the typesof grammatical fine-grained errors that affect the readability and coherence of essays writtenby Chinese primary and secondary school students, and then to suggest suitable corrections toenhance the fluidity of their written expression. This task consists of three distinct tracks: (1)Coarse-grained and fine-grained error identification; (2) Character-level error identification andcorrection; (3) Error sentence rewriting. In the end, we received 44 completed registration forms,leading to a total of 130 submissions from 11 dedicated participating teams. We present theresults of all participants and our analysis of these results. Both the dataset and evaluation toolused in this task are available1.”
This paper introduces the Chinese Essay Discourse Coherence Corpus (CEDCC), a multi-task dataset for assessing discourse coherence. Existing research tends to focus on isolated dimensions of discourse coherence, a gap which the CEDCC addresses by integrating coherence grading, topical continuity, and discourse relations. This approach, alongside detailed annotations, captures the subtleties of real-world texts and stimulates progress in Chinese discourse coherence analysis. Our contributions include the development of the CEDCC, the establishment of baselines for further research, and the demonstration of the impact of coherence on discourse relation recognition and automated essay scoring. The dataset and related codes is available at https://github.com/cubenlp/CEDCC_corpus.
Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces “Smart Word Suggestions” (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes will be available for research purposes.