This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ShanshanWang
Also published as:
珊珊 王
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Temporal Knowledge Graph Reasoning (TKGR) aims to predict future facts based on historical data. Current mainstream models primarily use embedding techniques, which predict missing facts by representing entities and relations as low-dimensional vectors. However, these models often consider only the structural information of individual entities and relations, overlooking the broader structure of the entire TKG. To address these limitations, we propose a novel model called Relation Logical Reasoning and Relation-aware Entity Encoding (RLEE), drawing inspiration from attention mechanisms and logical rule-based techniques. RLEE introduces a two-layer representation of the TKG: an entity layer and a relation layer. At the relation layer, we extract relation paths to mine potential logical correlations between different relations, learning relation embeddings through a process of relation logical reasoning. At the entity layer, we use the relation-aware attention mechanism to learn the entity embeddings specific to the predicted query relations. These learned relation and entity embeddings are then used to predict facts at future timestamps. When evaluated on five commonly used public datasets, RLEE consistently outperforms state-of-the-art baselines.
The rapid development of advanced large language models (LLMs) has made AI-generated text indistinguishable from human-written text. Previous work on detecting AI-generated text has made effective progress, but has not involved modern Chinese poetry. Due to the distinctive characteristics of modern Chinese poetry, it is difficult to identify whether a poem originated from humans or AI. The proliferation of AI-generated modern Chinese poetry has significantly disrupted the poetry ecosystem. Based on the urgency of identifying AI-generated poetry in the real Chinese world, this paper proposes a novel benchmark for detecting LLMs-generated modern Chinese poetry. We first construct a high-quality dataset, which includes both 800 poems written by six professional poets and 41,600 poems generated by four mainstream LLMs. Subsequently, we conduct systematic performance assessments of six detectors on this dataset. Experimental results demonstrate that current detectors cannot be used as reliable tools to detect modern Chinese poems generated by LLMs. The most difficult poetic features to detect are intrinsic qualities, especially style. The detection results verify the effectiveness and necessity of our proposed benchmark. Our work lays a foundation for future detection of AI-generated poetry.
Machine translation (MT) has historically faced significant challenges when applied to literary works, particularly in the domain of poetry translation. The advent of Large Language Models such as ChatGPT holds potential for innovation in this field. This study examines ChatGPT’s capabilities in English-Chinese poetry translation tasks, utilizing targeted prompts and small sample scenarios to ascertain optimal performance. Despite promising outcomes, our analysis reveals persistent issues in the translations generated by ChatGPT that warrant attention. To address these shortcomings, we propose an Explanation-Assisted Poetry Machine Translation (EAPMT) method, which leverages monolingual poetry explanation as a guiding information for the translation process. Furthermore, we refine existing evaluation criteria to better suit the nuances of modern poetry translation. We engaged a panel of professional poets for assessments, complemented evaluations by using GPT-4. The results from both human and machine evaluations demonstrate that our EAPMT method outperforms traditional translation methods of ChatGPT and the existing online systems. This paper validates the efficacy of our method and contributes a novel perspective to machine-assisted literary translation.
The application of machine translation in the field of poetry has always presented significant challenges. Conventional machine translation techniques are inadequate for capturing and translating the unique style of poetry. The absence of a parallel poetry corpus and the distinctive structure of poetry further restrict the effectiveness of traditional methods. This paper introduces a zero-shot method that is capable of translating poetry style without the need for a large-scale training corpus. Specifically, we treat poetry translation as a standard machine translation problem and subsequently inject the poetry style upon completion of the translation process. Our injection model only requires back-translation and easily obtainable monolingual data, making it a low-cost solution. We conducted experiments on three translation directions and presented automatic and human evaluations, demonstrating that our proposed method outperforms existing online systems and other competitive baselines. These results validate the feasibility and potential of our proposed approach and provide new prospects for poetry translation.