Shahriar Shariati Motlagh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Persian in a Court: Benchmarking VLMs In Persian Multi-Modal Tasks
Farhan Farsi | Shahriar Shariati Motlagh | Shayan Bali | Sadra Sabouri | Saeedeh Momtazi
Proceedings of the First Workshop of Evaluation of Multi-Modal Generation

This study introduces a novel framework for evaluating Large Language Models (LLMs) and Vision-Language Models (VLMs) in Persian, a low-resource language. We develop comprehensive datasets to assess reasoning, linguistic understanding, and multimodal capabilities. Our datasets include Persian-OCR-QA for optical character recognition, Persian-VQA for visual question answering, Persian world-image puzzle for multimodal integration, Visual-Abstraction-Reasoning for abstract reasoning, and Iran-places for visual knowledge of Iranian figures and locations. We evaluate models like GPT-4o, Claude 3.5 Sonnet, and Llama 3.2 90B Vision, revealing their strengths and weaknesses in processing Persian. This research contributes to inclusive language processing by addressing the unique challenges of low-resource language evaluation.