Shahriar Hossain


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Mind_Matrix at CQs-Gen 2025: Adaptive Generation of Critical Questions for Argumentative Interventions
Sha Newaz Mahmud | Shahriar Hossain | Samia Rahman | Momtazul Arefin Labib | Hasan Murad
Proceedings of the 12th Argument mining Workshop

To encourage computational argumentation through critical question generation (CQs-Gen),we propose an ACL 2025 CQs-Gen shared task system to generate critical questions (CQs) with the best effort to counter argumentative text by discovering logical fallacies, unjustified assertions, and implicit assumptions.Our system integrates a quantized language model, semantic similarity analysis, and a meta-evaluation feedback mechanism including the key stages such as data preprocessing, rationale-augmented prompting to induce specificity, diversity filtering for redundancy elimination, enriched meta-evaluation for relevance, and a feedback-reflect-refine loop for iterative refinement. Multi-metric scoring guarantees high-quality CQs. With robust error handling, our pipeline ranked 7th among 15 teams, outperforming baseline fact-checking approaches by enabling critical engagement and successfully detecting argumentative fallacies. This study presents an adaptive, scalable method that advances argument mining and critical discourse analysis.