This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ShahabJalalvand
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Spoken language understanding (SLU) extracts the intended mean- ing from a user utterance and is a critical component of conversational virtual agents. In enterprise virtual agents (EVAs), language understanding is substantially challenging. First, the users are infrequent callers who are unfamiliar with the expectations of a pre-designed conversation flow. Second, the users are paying customers of an enterprise who demand a reliable, consistent and efficient user experience when resolving their issues. In this work, we describe a general and robust framework for intent and entity extraction utilizing a hybrid of statistical and rule-based approaches. Our framework includes confidence modeling that incorporates information from all components in the SLU pipeline, a critical addition for EVAs to en- sure accuracy. Our focus is on creating accurate and scalable SLU that can be deployed rapidly for a large class of EVA applications with little need for human intervention.
In this paper, we describe FBK’s neural machine translation (NMT) systems submitted at the International Workshop on Spoken Language Translation (IWSLT) 2016. The systems are based on the state-of-the-art NMT architecture that is equipped with a bi-directional encoder and an attention mechanism in the decoder. They leverage linguistic information such as lemmas and part-of-speech tags of the source words in the form of additional factors along with the words. We compare performances of word and subword NMT systems along with different optimizers. Further, we explore different ensemble techniques to leverage multiple models within the same and across different networks. Several reranking methods are also explored. Our submissions cover all directions of the MSLT task, as well as en-{de, fr} and {de, fr}-en directions of TED. Compared to previously published best results on the TED 2014 test set, our models achieve comparable results on en-de and surpass them on en-fr (+2 BLEU) and fr-en (+7.7 BLEU) language pairs.
In this paper, we apply a set of approaches to, efficiently, rescore the output of the automatic speech recognition over weather-domain data. Since the in-domain data is usually insufficient for training an accurate language model (LM) we utilize an automatic selection method to extract domain-related sentences from a general text resource. Then, an N-gram language model is trained on this set. We exploit this LM, along with a pre-trained acoustic model for recognition of the development and test instances. The recognizer generates a confusion network (CN) for each instance. Afterwards, we make use of the recurrent neural network language model (RNNLM), trained on the in-domain data, in order to iteratively rescore the CNs. Rescoring the CNs, in this way, requires estimating the weights of the RNNLM, N-gramLM and acoustic model scores. Weights optimization is the critical part of this work, whereby, we propose using the minimum error rate training (MERT) algorithm along with a novel N-best list extraction method. The experiments are done over weather forecast domain data that has been provided in the framework of EUBRIDGE project.