Seyed Ali Farokh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
ALF at SemEval-2024 Task 9: Exploring Lateral Thinking Capabilities of LMs through Multi-task Fine-tuning
Seyed Ali Farokh | Hossein Zeinali
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Recent advancements in natural language processing (NLP) have prompted the development of sophisticated reasoning benchmarks. This paper presents our system for the SemEval 2024 Task 9 competition and also investigates the efficacy of fine-tuning language models (LMs) on BrainTeaser—a benchmark designed to evaluate NLP models’ lateral thinking and creative reasoning abilities. Our experiments focus on two prominent families of pre-trained models, BERT and T5. Additionally, we explore the potential benefits of multi-task fine-tuning on commonsense reasoning datasets to enhance performance. Our top-performing model, DeBERTa-v3-large, achieves an impressive overall accuracy of 93.33%, surpassing human performance.