Seunghyun Bae


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
“Well, Keep Thinking”: Enhancing LLM Reasoning with Adaptive Injection Decoding
Hyunbin Jin | Je Won Yeom | Seunghyun Bae | Taesup Kim
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) exhibit strong reasoning abilities, often attributed to few-shot or zero-shot Chain-of-Thought (CoT) prompting. While effective, these methods require labor-intensive prompt engineering, raising the question of whether reasoning can be induced without reliance on explicit prompts. In this work, we unlock the reasoning capabilities of LLMs without explicit prompting.Inspired by zero-shot CoT and CoT-decoding, we propose a novel decoding strategy that systematically nudges LLMs to continue reasoning, thereby preventing immature reasoning processes. Specifically, we monitor the model’s generation and inject a designated phrase, whenever the model is likely to halt or drift away from logical reasoning process. Our experimental evaluations on diverse reasoning benchmarks demonstrate that our proposed strategy substantially improves LLM reasoning capabilities, highlighting the potential of decoding-based interventions as an alternative to traditional prompting techniques.