Serkan Kumyol


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Efficient Bilingual Generalization from Neural Transduction Grammar Induction
Yuchen Yan | Dekai Wu | Serkan Kumyol
Proceedings of the 16th International Conference on Spoken Language Translation

We introduce (1) a novel neural network structure for bilingual modeling of sentence pairs that allows efficient capturing of bilingual relationship via biconstituent composition, (2) the concept of neural network biparsing, which applies to not only machine translation (MT) but also to a variety of other bilingual research areas, and (3) the concept of a biparsing-backpropagation training loop, which we hypothesize that can efficiently learn complex biparse tree patterns. Our work distinguishes from sequential attention-based models, which are more traditionally found in neural machine translation (NMT) in three aspects. First, our model enforces compositional constraints. Second, our model has a smaller search space in terms of discovering bilingual relationships from bilingual sentence pairs. Third, our model produces explicit biparse trees, which enable transparent error analysis during evaluation and external tree constraints during training.