This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SergeyPletenev
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Retrieval Augmented Generation (RAG) improves correctness of Question Answering (QA) and addresses hallucinations in Large Language Models (LLMs), yet greatly increase computational costs. Besides, RAG is not always needed as may introduce irrelevant information. Recent adaptive retrieval methods integrate LLMs’ intrinsic knowledge with external information appealing to LLM self-knowledge, but they often neglect efficiency evaluations and comparisons with uncertainty estimation techniques. We bridge this gap by conducting a comprehensive analysis of 35 adaptive retrieval methods, including 8 recent approaches and 27 uncertainty estimation techniques, across 6 datasets using 10 metrics for QA performance, self-knowledge, and efficiency. Our findings show that uncertainty estimation techniques often outperform complex pipelines in terms of efficiency and self-knowledge, while maintaining comparable QA performance.
Large Language Models (LLMs) often hallucinate in question answering (QA) tasks. A key yet underexplored factor contributing to this is the temporality of questions – whether they are evergreen (answers remain stable over time) or mutable (answers change). In this work, we introduce EverGreenQA, the first multilingual QA dataset with evergreen labels, supporting both evaluation and training. Using EverGreenQA, we benchmark 12 modern LLMs to assess whether they encode question temporality explicitly (via verbalized judgments) or implicitly (via uncertainty signals). We also train EG-E5, a lightweight multilingual classifier that achieves SoTA performance on this task. Finally, we demonstrate the practical utility of evergreen classification across three applications: improving self-knowledge estimation, filtering QA datasets, and explaining GPT-4o’s retrieval behavior.
Large Language Models (LLMs) are prone to hallucinations, and Retrieval-Augmented Generation (RAG) helps mitigate this, but at a high computational cost while risking misinformation. Adaptive retrieval aims to retrieve only when necessary, but existing approaches rely on LLM-based uncertainty estimation, which remains inefficient and impractical.In this study, we introduce lightweight LLM-independent adaptive retrieval methods based on external information. We investigated 27 features, organized into 7 groups, and their hybrid combinations. We evaluated these methods on 6 QA datasets, assessing the QA performance and efficiency. The results show that our approach matches the performance of complex LLM-based methods while achieving significant efficiency gains, demonstrating the potential of external information for adaptive retrieval.
The performance of Large Language Models (LLMs) on many tasks is greatly limited by the knowledge learned during pre-training and stored in the model’s parameters. Low-rank adaptation (LoRA) is a popular and efficient training technique for updating or domain-specific adaptation of LLMs. In this study, we investigate how new facts can be incorporated into the LLM using LoRA without compromising the previously learned knowledge. We fine-tuned Llama-3.1-8B-instruct using LoRA with varying amounts of new knowledge. Our experiments have shown that the best results are obtained when the training data contains a mixture of known and new facts. However, this approach is still potentially harmful because the model’s performance on external question-answering benchmarks declines after such fine-tuning. When the training data is biased towards certain entities, the model tends to regress to few overrepresented answers. In addition, we found that the model becomes more confident and refuses to provide an answer in only few cases. These findings highlight the potential pitfalls of LoRA-based LLM updates and underscore the importance of training data composition and tuning parameters to balance new knowledge integration and general model capabilities.
Existing approaches to multilingual text detoxification are hampered by the scarcity of parallel multilingual datasets. In this work, we introduce a pipeline for the generation of multilingual parallel detoxification data. We also introduce SynthDetoxM, a manually collected and synthetically generated multilingual parallel text detoxification dataset comprising 16,000 high-quality detoxification sentence pairs across German, French, Spanish and Russian. The data was sourced from different toxicity evaluation datasets and then rewritten with nine modern open-source LLMs in few-shot setting. Our experiments demonstrate that models trained on the produced synthetic datasets have superior performance to those trained on the human-annotated MultiParaDetox dataset even in data limited setting. Models trained on SynthDetoxM outperform all evaluated LLMs in few-shot setting. We release our dataset and code to help further research in multilingual text detoxification.
Interpretability studies have played an important role in the field of NLP. They focus on the problems of how models encode information or, for instance, whether linguistic capabilities allow them to prefer grammatical sentences to ungrammatical. Recently, several studies examined whether the models demonstrate patterns similar to humans and whether they are sensitive to the phenomena of interference like humans’ grammaticality judgements, including the phenomenon of agreement attraction.In this paper, we probe BERT and GPT models on the syntactic phenomenon of agreement attraction in Russian using the psycholinguistic data with syncretism. Working on the language with syncretism between some plural and singular forms allows us to differentiate between the effects of the surface form and of the underlying grammatical feature. Thus we can further investigate models’ sensitivity to this phenomenon and examine if the patterns of their behaviour are similar to human patterns. Moreover, we suggest a new way of comparing models’ and humans’ responses via statistical testing. We show that there are some similarities between models’ and humans’ results, while GPT is somewhat more aligned with human responses than BERT. Finally, preliminary results suggest that surface form syncretism influences attraction, perhaps more so than grammatical form syncretism.
The lack of high-quality training data remains a significant challenge in NLP. Manual annotation methods, such as crowdsourcing, are costly, require intricate task design skills, and, if used incorrectly, may result in poor data quality. From the other hand, LLMs have demonstrated proficiency in many NLP tasks, including zero-shot and few-shot data annotation. However, they often struggle with text detoxification due to alignment constraints and fail to generate the required detoxified text. This work explores the potential of modern open source LLMs to annotate parallel data for text detoxification. Using the recent technique of activation patching, we generate a pseudo-parallel detoxification dataset based on ParaDetox. The detoxification model trained on our generated data shows comparable performance to the original dataset in automatic detoxification evaluation metrics and superior quality in manual evaluation and side-by-side comparisons.
Linguistics predictability is the degree of confidence in which language unit (word, part of speech, etc.) will be the next in the sequence. Experiments have shown that the correct prediction simplifies the perception of a language unit and its integration into the context. As a result of an incorrect prediction, language processing slows down. Currently, to get a measure of the language unit predictability, a neurolinguistic experiment known as a cloze task has to be conducted on a large number of participants. Cloze tasks are resource-consuming and are criticized by some researchers as an insufficiently valid measure of predictability. In this paper, we compare different language models that attempt to simulate human respondents’ performance on the cloze task. Using a language model to create cloze task simulations would require significantly less time and conduct studies related to linguistic predictability.