Temporal Domain Generalization (TDG) aims to generalize across temporal distribution shifts, e.g., lexical change over time. Prior work often addresses this by predicting future model weights. However, full model prediction is prohibitively expensive for even reasonably sized models. Thus, recent methods only predict the classifier layer, limiting generalization by failing to adjust other model components. To address this, we propose Temporal Expert Averaging (TEA), a novel and scalable TDG framework that updates the entire model using weight averaging to maximize generalization potential while minimizing computational costs. Our theoretical analysis guides us to two steps that enhance generalization to future domains. First, we create expert models with functional diversity yet parameter similarity by fine-tuning a domain-agnostic base model on individual temporal domains while constraining weight changes. Second, we optimize the bias-variance tradeoff through adaptive averaging coefficients derived from modeling temporal weight trajectories in a principal component subspace. Expert’s contributions are based on their projected proximity to future domains. Extensive experiments across 7 TDG benchmarks, 5 models, and 2 TDG settings shows TEA outperforms prior TDG methods by up to 69% while being up to 60x more efficient.
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of images and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification. CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution using the predicted class distributions of high-confidence validation examples. CAN is easily applicable to any probabilistic classifier, with minimal computation overhead. We analyze the properties of CAN using simulated experiments, and empirically demonstrate its effectiveness across a diverse set of classification tasks.