Sean Pavlov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs
Simon Almgren | Sean Pavlov | Olof Mogren
Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)

We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60% improvement in F 1 score over the baseline, and our system generalizes well between different datasets.