This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SathvikNair
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Humans develop their grammars by making structural generalizations from finite input. We ask how filler-gap dependencies (FGDs), which share a structural generalization despite diverse surface forms, might arise from the input. We explicitly control the input to a neural language model (NLM) to uncover whether the model posits a shared representation for FGDs. We show that while NLMs do have success differentiating grammatical from ungrammatical FGDs, they rely on superficial properties of the input, rather than on a shared generalization. Our work highlights the need for specific linguistic inductive biases to model language acquisition.
An important assumption that comes with using LLMs on psycholinguistic data has gone unverified. LLM-based predictions are based on subword tokenization, not decomposition of words into morphemes. Does that matter? We carefully test this by comparing surprisal estimates using orthographic, morphological, and BPE tokenization against reading time data. Our results replicate previous findings and provide evidence that *in the aggregate*, predictions using BPE tokenization do not suffer relative to morphological and orthographic segmentation. However, a finer-grained analysis points to potential issues with relying on BPE-based tokenization, as well as providing promising results involving morphologically-aware surprisal estimates and suggesting a new method for evaluating morphological prediction.
Understanding context-dependent variation in word meanings is a key aspect of human language comprehension supported by the lexicon. Lexicographic resources (e.g., WordNet) capture only some of this context-dependent variation; for example, they often do not encode how closely senses, or discretized word meanings, are related to one another. Our work investigates whether recent advances in NLP, specifically contextualized word embeddings, capture human-like distinctions between English word senses, such as polysemy and homonymy. We collect data from a behavioral, web-based experiment, in which participants provide judgments of the relatedness of multiple WordNet senses of a word in a two-dimensional spatial arrangement task. We find that participants’ judgments of the relatedness between senses are correlated with distances between senses in the BERT embedding space. Specifically, homonymous senses (e.g., bat as mammal vs. bat as sports equipment) are reliably more distant from one another in the embedding space than polysemous ones (e.g., chicken as animal vs. chicken as meat). Our findings point towards the potential utility of continuous-space representations of sense meanings.