Sascha Rolinger


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Graph-of-Thoughts for Fact-Checking with Large Language Models
Sascha Rolinger | Jin Liu
Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)

We present a fact-checking system developed for the 2025 Automated Verification of Textual Claims (AVeriTeC) shared task, leveraging the Graph-of-Thoughts (GoT) prompting scheme. The GoT approach facilitates iterative refinement during fact-checking by conditioningquestion generation on previous answers and enabling the incorporation of multiple evidence documents per question, thereby mitigatingthe impact of factually incorrect evidence. The efficiency requirements of the shared task are addressed by restricting the width and depthof the thought graph. Additionally, an efficient stopping criterion is derived from the dataset’s Not Enough Information (NEI) label. Our system utilizes fine-tuned open-source Large Language Models (LLMs) for question generation, question answering, and final verdict prediction. Empirical results demonstrate competitive performance against top-performing systems in the AVeriTeC shared task and improvements over the baseline method. Our code is publicly available.
Search
Co-authors
Venues
Fix data