Sarvagya Malaviya


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
CIAug: Equipping Interpolative Augmentation with Curriculum Learning
Ramit Sawhney | Ritesh Soun | Shrey Pandit | Megh Thakkar | Sarvagya Malaviya | Yuval Pinter
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Interpolative data augmentation has proven to be effective for NLP tasks. Despite its merits, the sample selection process in mixup is random, which might make it difficult for the model to generalize better and converge faster. We propose CIAug, a novel curriculum-based learning method that builds upon mixup. It leverages the relative position of samples in hyperbolic embedding space as a complexity measure to gradually mix up increasingly difficult and diverse samples along training. CIAug achieves state-of-the-art results over existing interpolative augmentation methods on 10 benchmark datasets across 4 languages in text classification and named-entity recognition tasks. It also converges and achieves benchmark F1 scores 3 times faster. We empirically analyze the various components of CIAug, and evaluate its robustness against adversarial attacks.