Sarthak


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Noobs at Semeval-2021 Task 4: Masked Language Modeling for abstract answer prediction
Shikhar Shukla | Sarthak | Karm Veer Arya
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents the system developed by our team for Semeval 2021 Task 4: Reading Comprehension of Abstract Meaning. The aim of the task was to benchmark the NLP techniques in understanding the abstract concepts present in a passage, and then predict the missing word in a human written summary of the passage. We trained a Roberta-Large model trained with a masked language modeling objective. In cases where this model failed to predict one of the available options, another Roberta-Large model trained as a binary classifier was used to predict correct and incorrect options. We used passage summary generated by Pegasus model and question as inputs. Our best solution was an ensemble of these 2 systems. We achieved an accuracy of 86.22% on subtask 1 and 87.10% on subtask 2.