Sarthak Jauhari


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Compute-Efficient Churn Reduction for Conversational Agents
Sarthak Jauhari | Christopher Hidey
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Model churn occurs when re-training a model yields different predictions despite using the same data and hyper-parameters. Churn reduction is crucial for industry conversational systems where users expect consistent results for the same queries. In this setting, compute resources are often limited due to latency requirements during serving and overall time constraints during re-training. To address this issue, we propose a compute-efficient method that mitigates churn without requiring extra resources for training or inference. Our approach involves a lightweight data pre-processing step that pairs semantic parses based on their “function call signature” and encourages similarity through an additional loss based on Jensen-Shannon Divergence. We validate the effectiveness of our method in three scenarios: academic (+3.93 percent improvement on average in a churn reduction metric), simulated noisy data (+8.09), and industry (+5.28) settings.