This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SarahLuger
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The MLCommons Datasets Working Group presents a comprehensive initiative to advance the development and accessibility of artificial intelligence (AI) training and testing resources. This paper introduces three key projects aimed at addressing critical gaps in the AI data ecosystem: the Unsupervised People’s Speech Dataset, containing over 821,000 hours of speech across 89+ languages; a strategic collaboration with Common Crawl to enhance web crawling capabilities for low-resource languages; and a framework for knowledge graph extraction evaluation. By focusing on languages other than English (LOTE) and creating permissively licensed, high-quality datasets, these initiatives aim to democratize AI development and improve model performance across diverse linguistic contexts. This work represents a significant step toward more inclusive and capable AI systems that can serve global communities.
Human-annotated data plays a critical role in the fairness of AI systems, including those that deal with life-altering decisions or moderating human-created web/social media content. Conventionally, annotator disagreements are resolved before any learning takes place. However, researchers are increasingly identifying annotator disagreement as pervasive and meaningful. They also question the performance of a system when annotators disagree. Particularly when minority views are disregarded, especially among groups that may already be underrepresented in the annotator population. In this paper, we introduce CrowdOpinion, an unsupervised learning based approach that uses language features and label distributions to pool similar items into larger samples of label distributions. We experiment with four generative and one density-based clustering method, applied to five linear combinations of label distributions and features. We use five publicly available benchmark datasets (with varying levels of annotator disagreements) from social media (Twitter, Gab, and Reddit). We also experiment in the wild using a dataset from Facebook, where annotations come from the platform itself by users reacting to posts. We evaluate CrowdOpinion as a label distribution prediction task using KL-divergence and a single-label problem using accuracy measures.
Orange Silicon Valley hosted a low-resource machine translation (MT) competition with monetary prizes. The goals of the competition were to raise awareness of the challenges in the low-resource MT domain, improve MT algorithms and data strategies, and support MT expertise development in the regions where people speak Bambara and other low-resource languages. The participants built Bambara to French and French to Bambara machine translation systems using data provided by the organizers and additional data resources shared amongst the competitors. This paper details each team’s different approaches and motivation for ongoing work in Bambara and the broader low-resource machine translation domain.
Low-resource languages present unique challenges to (neural) machine translation. We discuss the case of Bambara, a Mande language for which training data is scarce and requires significant amounts of pre-processing. More than the linguistic situation of Bambara itself, the socio-cultural context within which Bambara speakers live poses challenges for automated processing of this language. In this paper, we present the first parallel data set for machine translation of Bambara into and from English and French and the first benchmark results on machine translation to and from Bambara. We discuss challenges in working with low-resource languages and propose strategies to cope with data scarcity in low-resource machine translation (MT).