Sarah Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Understand User Opinions of Large Language Models via LLM-Powered In-the-Moment User Experience Interviews
Mengqiao Liu | Tevin Wang | Cassandra A. Cohen | Sarah Li | Chenyan Xiong
Findings of the Association for Computational Linguistics: ACL 2025

Which large language model (LLM) is better? Every evaluation tells a story, but what do users really think about current LLMs? This paper presents CLUE, an LLM-powered interviewer that conducts in-the-moment user experience interviews, right after users interact with LLMs, and automatically gathers insights about user opinions from massive interview logs. We conduct a study with thousands of users to understand user opinions on mainstream LLMs, recruiting users to first chat with a target LLM and then be interviewed by CLUE. Our experiments demonstrate that CLUE captures interesting user opinions, e.g., the bipolar views on the displayed reasoning process of DeepSeek-R1 and demands for information freshness and multi-modality. Our code and data are at https://github.com/cxcscmu/LLM-Interviewer.