Sarah De V ogué


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Augmentation des données par LLM pour améliorer la détection automatique des erreurs de coordination
Chunxiao Yan | Iris Eshkol-Taravella | Sarah De V ogué | Marianne Desmets
Actes des 32ème Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : articles scientifiques originaux

Afin d’améliorer les performances d’un outil de détection automatique des erreurs de coordination, cette étude explore l’utilisation de grands modèles de langage (LLM) pour remédier au déséquilibre des classes et à la limitation des données. En générant des phrases erronées simulées par un LLM pour former un corpus synthétique, nous améliorons la détection d’une classe sous-représentée ainsi que les performances globales du modèle. Nous étudions également l’application des LLM à l’annotation des données, avec pour objectif d’intégrer ces annotations à l’entraînement afin d’optimiser l’apprentissage du modèle.