Sara Pieri


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
The Structural Safety Generalization Problem
Julius Broomfield | Tom Gibbs | George Ingebretsen | Ethan Kosak-Hine | Tia Nasir | Jason Zhang | Reihaneh Iranmanesh | Sara Pieri | Reihaneh Rabbany | Kellin Pelrine
Findings of the Association for Computational Linguistics: ACL 2025

LLM jailbreaks are a widespread safety challenge. Given this problem has not yet been tractable, we suggest targeting a key failure mechanism: the failure of safety to generalize across semantically equivalent inputs. We further focus the target by requiring desirable tractability properties of attacks to study: explainability, transferability between models, and transferability between goals. We perform red-teaming within this framework by uncovering new vulnerabilities to multi-turn, multi-image, and translation-based attacks. These attacks are semantically equivalent by our design to their single-turn, single-image, or untranslated counterparts, enabling systematic comparisons; we show that the different structures yield different safety outcomes. We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment. This guardrail significantly improves refusal of harmful inputs, without over-refusing benign ones. Thus, by framing this intermediate challenge—more tractable than universal defenses but essential for long-term safety—we highlight a critical milestone for AI safety research.

pdf bib
BiMediX2 : Bio-Medical EXpert LMM for Diverse Medical Modalities
Sahal Shaji Mullappilly | Mohammed Irfan Kurpath | Sara Pieri | Saeed Yahya Alseiari | Shanavas Cholakkal | Khaled M Aldahmani | Fahad Shahbaz Khan | Rao Muhammad Anwer | Salman Khan | Timothy Baldwin | Hisham Cholakkal
Findings of the Association for Computational Linguistics: EMNLP 2025

We introduce BiMediX2, a bilingual (Arabic-English) Bio-Medical EXpert Large Multimodal Model that supports text-based and image-based medical interactions. It enables multi-turn conversation in Arabic and English and supports diverse medical imaging modalities, including radiology, CT, and histology. To train BiMediX2, we curate BiMed-V, an extensive Arabic-English bilingual healthcare dataset consisting of 1.6M samples of diverse medical interactions. This dataset supports a range of medical Large Language Model (LLM) and Large Multimodal Model (LMM) tasks, including multi-turn medical conversations, report generation, and visual question answering (VQA). We also introduce BiMed-MBench, the first Arabic-English medical LMM evaluation benchmark, verified by medical experts. BiMediX2 demonstrates excellent performance across multiple medical LLM and LMM benchmarks, achieving state-of-the-art results compared to other open-sourced models. On BiMed-MBench, BiMediX2 outperforms existing methods by over 9% in English and more than 20% in Arabic evaluations. Additionally, it surpasses GPT-4 by approximately 9% in UPHILL factual accuracy evaluations and excels in various medical VQA, report generation, and report summarization tasks. Our trained models, instruction set, and source code are available at - https://github.com/mbzuai-oryx/BiMediX2

2024

pdf bib
BiMediX: Bilingual Medical Mixture of Experts LLM
Sara Pieri | Sahal Shaji Mullappilly | Fahad Shahbaz Khan | Rao Muhammad Anwer | Salman Khan | Timothy Baldwin | Hisham Cholakkal
Findings of the Association for Computational Linguistics: EMNLP 2024

In this paper, we introduce BiMediX, the first bilingual medical mixture of experts LLM designed for seamless interaction in both English and Arabic. Our model facilitates a wide range of medical interactions in English and Arabic, including multi-turn chats to inquire about additional details such as patient symptoms and medical history, multiple-choice question answering, and open-ended question answering. We propose a semi-automated English-to-Arabic translation pipeline with human refinement to ensure high-quality translations. We also introduce a comprehensive evaluation benchmark for Arabic medical LLMs. Furthermore, we introduce BiMed1.3M, an extensive Arabic-English bilingual instruction set that covers 1.3 Million diverse medical interactions, including 200k synthesized multi-turn doctor-patient chats, in a 1:2 Arabic-to-English ratio. Our model outperforms state-of-the-art Med42 and Meditron by average absolute gains of 2.5% and 4.1%, respectively, computed across multiple medical evaluation benchmarks in English, while operating at 8-times faster inference. Moreover, our BiMediX outperforms the generic Arabic-English bilingual LLM, Jais-30B, by average absolute gains of 10% on our Arabic and 15% on our bilingual evaluations across multiple datasets. Additionally, BiMediX exceeds the accuracy of GPT4 by 4.4% in open-ended question UPHILL evaluation and largely outperforms state-of-the-art open source medical LLMs in human evaluations of multi-turn conversations. Our trained models, instruction set, and source code are available at https://github.com/mbzuai-oryx/BiMediX.