Saptharishee M


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
DLRG-DravidianLangTech@EACL2024 : Combating Hate Speech in Telugu Code-mixed Text on Social Media
Ratnavel Rajalakshmi | Saptharishee M | Hareesh S | Gabriel R | Varsini Sr
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Detecting hate speech in code-mixed language is vital for a secure online space, curbing harmful content, promoting inclusive communication, and safeguarding users from discrimination. Despite the linguistic complexities of code-mixed languages, this study explores diverse pre-processing methods. It finds that the Transliteration method excels in handling linguistic variations. The research comprehensively investigates machine learning and deep learning approaches, namely Logistic Regression and Bi-directional Gated Recurrent Unit (Bi-GRU) models. These models achieved F1 scores of 0.68 and 0.70, respectively, contributing to ongoing efforts to combat hate speech in code-mixed languages and offering valuable insights for future research in this critical domain.