This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SankalpBahad
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Social media platforms, while enabling globalconnectivity, have become hubs for the rapidspread of harmful content, including hatespeech and fake narratives (Davidson et al.,2017; Shu et al., 2017). The Faux-Hateshared task focuses on detecting a specific phe-nomenon: the generation of hate speech drivenby fake narratives, termed Faux-Hate. Partici-pants are challenged to identify such instancesin code-mixed Hindi-English social media text.This paper describes our system developed forthe shared task, addressing two primary sub-tasks: (a) Binary Faux-Hate detection, involv-ing fake and hate speech classification, and(b) Target and Severity prediction, categoriz-ing the intended target and severity of hate-ful content. Our approach combines advancednatural language processing techniques withdomain-specific pretraining to enhance perfor-mance across both tasks. The system achievedcompetitive results, demonstrating the efficacyof leveraging multi-task learning for this com-plex problem.
Named Entity Recognition (NER) is a use-ful component in Natural Language Process-ing (NLP) applications. It is used in varioustasks such as Machine Translation, Summa-rization, Information Retrieval, and Question-Answering systems. The research on NER iscentered around English and some other ma-jor languages, whereas limited attention hasbeen given to Indian languages. We analyze thechallenges and propose techniques that can betailored for Multilingual Named Entity Recog-nition for Indian Languages. We present a hu-man annotated named entity corpora of ∼40Ksentences for 4 Indian languages from two ofthe major Indian language families. Addition-ally, we show the transfer learning capabilitiesof pre-trained transformer models from a highresource language to multiple low resource lan-guages through a series of experiments. Wealso present a multilingual model fine-tunedon our dataset, which achieves an F1 score of∼0.80 on our dataset on average. We achievecomparable performance on completely unseenbenchmark datasets for Indian languages whichaffirms the usability of our model.
Natural language processing (NLP) modelshave achieved remarkable progress in recentyears, particularly in tasks related to semanticanalysis. However, many existing benchmarksprimarily focus on lexical and syntactic un-derstanding, often overlooking the importanceof numerical reasoning abilities. In this pa-per, we argue for the necessity of incorporatingnumeral-awareness into NLP evaluations andpropose two distinct tasks to assess this capabil-ity: Numerical Reasoning and Headline Gener-ation. We present datasets curated for each taskand evaluate various approaches using both au-tomatic and human evaluation metrics. Ourresults demonstrate the diverse strategies em-ployed by participating teams and highlight thepromising performance of emerging modelslike Mixtral 8x7b instruct. We discuss the im-plications of our findings and suggest avenuesfor future research in advancing numeral-awarelanguage understanding and generation.
In this paper, we introduce a machine-generated text detection system designed totackle the challenges posed by the prolifera-tion of large language models (LLMs). Withthe rise of LLMs such as ChatGPT and GPT-4,there is a growing concern regarding the po-tential misuse of machine-generated content,including misinformation dissemination. Oursystem addresses this issue by automating theidentification of machine-generated text acrossmultiple subtasks: binary human-written vs.machine-generated text classification, multi-way machine-generated text classification, andhuman-machine mixed text detection. We em-ploy the RoBERTa Base model and fine-tuneit on a diverse dataset encompassing variousdomains, languages, and sources. Throughrigorous evaluation, we demonstrate the effec-tiveness of our system in accurately detectingmachine-generated text, contributing to effortsaimed at mitigating its potential misuse.
Semantic hallucinations in neural language gen-eration systems pose a significant challenge tothe reliability and accuracy of natural languageprocessing applications. Current neural mod-els often produce fluent but incorrect outputs,undermining the usefulness of generated text.In this study, we address the task of detectingsemantic hallucinations through the SHROOM(Semantic Hallucinations Real Or Mistakes)dataset, encompassing data from diverse NLGtasks such as definition modeling, machinetranslation, and paraphrase generation. We in-vestigate three methodologies: fine-tuning onlabelled training data, fine-tuning on labelledvalidation data, and a zero-shot approach usingthe Mixtral 8x7b instruct model. Our resultsdemonstrate the effectiveness of these method-ologies in identifying semantic hallucinations,with the zero-shot approach showing compet-itive performance without additional training.Our findings highlight the importance of robustdetection mechanisms for ensuring the accu-racy and reliability of neural language genera-tion systems.