Sangjun Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models
Sangjun Lee | Seung-taek Woo | Jun-gyu Jin | Changhun Lee | Eunhyeok Park
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10100 possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations: (1) **search space pruning** using prior knowledge to exclude unpromising configurations, (2) **quantization proxy** to bypass costly format conversions during search, (3) **quality predictor** to minimize evaluation overhead, and (4) **iterative search-and-update** strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality–efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing.