Sander Tars


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Multi-Domain Neural Machine Translation
Sander Tars | Mark Fishel
Proceedings of the 21st Annual Conference of the European Association for Machine Translation

We present an approach to neural machine translation (NMT) that supports multiple domains in a single model and allows switching between the domains when translating. The core idea is to treat text domainsasdistinctlanguagesandusemultilingual NMT methods to create multi-domain translation systems; we show that this approach results in significant translation quality gains over fine-tuning. We also explore whether the knowledge of pre-specified text domains is necessary; turns out that it is after all, but also that when it is not known quite high translation quality can be reached, and even higher than with known domains in some cases.