This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SandeepPolisetty
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarding confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.
With the widespread application of large language models (LLMs), the issue of generating non-existing facts, known as hallucination, has garnered increasing attention. Previous research in enhancing LLM confidence estimation mainly focuses on the single problem setting. However, LLM awareness of its internal parameterized knowledge boundary under the more challenging multi-problem setting, which requires answering multiple problems accurately simultaneously, remains underexplored. To bridge this gap, we introduce a novel method, Multiple Answers and Confidence Stepwise Tuning (MAC-Tuning), that separates the learning of answer prediction and confidence estimation during fine-tuning on instruction data. Extensive experiments across various base models and different model sizes demonstrate that our method proposed outperforms baselines by up to 25% in average precision.
Multimodal Large Language Models (MLLMs) have shown remarkable versatility in understanding diverse multimodal data and tasks. However, these capabilities come with an increased model scale. While post-training pruning reduces model size in unimodal models, its application to MLLMs often yields limited success. Our analysis discovers that conventional methods fail to account for the unique token attributes across layers and modalities inherent to MLLMs. Inspired by this observation, we propose TAMP, a simple yet effective pruning framework tailored for MLLMs, featuring two key components: (1) Diversity-Aware Sparsity, which adjusts sparsity ratio per layer based on diversities among multimodal output tokens, preserving more parameters in high-diversity layers; and (2) Adaptive Multimodal Input Activation, which identifies representative multimodal input tokens using attention scores to guide unstructured weight pruning. We validate our method on two state-of-the-art MLLMs: LLaVA-NeXT, designed for vision-language tasks, and VideoLLaMA2, capable of processing audio, visual, and language modalities. Empirical experiments across various multimodal evaluation benchmarks demonstrate that each component of our approach substantially outperforms existing pruning techniques. Our code is available at https://github.com/G-JWLee/TAMP
Large Vision Language Models (LVLMs) have shown impressive performance on various vision-language tasks. However, while objects in natural scenes inevitably exhibit visual variations in position, scale, orientation, and context due to changes in viewpoint and environment, the robustness of LVLMs to these fundamental visual variations remains largely unexplored. To address this gap, we introduce V²R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation of 13 LVLMs, we reveal a surprising vulnerability to visual variations, affecting even advanced models that excel at complex vision-language tasks yet significantly underperform on simple tasks like object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we propose a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural challenges, underscoring the need for architectural innovations in future LVLM designs.
To defend against machine-generated fake news, an effective mechanism is urgently needed. We contribute a novel benchmark for fake news detection at the knowledge element level, as well as a solution for this task which incorporates cross-media consistency checking to detect the fine-grained knowledge elements making news articles misinformative. Due to training data scarcity, we also formulate a novel data synthesis method by manipulating knowledge elements within the knowledge graph to generate noisy training data with specific, hard to detect, known inconsistencies. Our detection approach outperforms the state-of-the-art (up to 16.8% accuracy gain), and more critically, yields fine-grained explanations.