Sanaa Abu Alasal


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
ES-JUST at SemEval-2021 Task 7: Detecting and Rating Humor and Offensive Text Using Deep Learning
Emran Al Bashabsheh | Sanaa Abu Alasal
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This research presents the work of the team’s ES-JUST at semEval-2021 task 7 for detecting and rating humor and offensive text using deep learning. The team evaluates several approaches (i.e.Bert, Roberta, XLM-Roberta, and Bert embedding + Bi-LSTM) that employ in four sub-tasks. The first sub-task deal with whether the text is humorous or not. The second sub-task is the degree of humor in the text if the first sub-task is humorous. The third sub-task represents the text is controversial or not if it is humorous. While in the last task is the degree of an offensive in the text. However, Roberta pre-trained model outperforms other approaches and score the highest in all sub-tasks. We rank on the leader board at the evaluation phase are 14, 15, 20, and 5 through 0.9564 F-score, 0.5709 RMSE, 0.4888 F-score, and 0.4467 RMSE results, respectively, for each of the first, second, third, and fourth sub-task, respectively.