This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SamuelAckerman
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
We evaluate the robustness of several large language models on multiple datasets. Robustness here refers to the relative insensitivity of the model’s answers to meaning-preserving variants of their input. Benchmark datasets are constructed by introducing naturally-occurring, non-malicious perturbations, or by generating semantically equivalent paraphrases of input questions or statements. We further propose a novel metric for assessing a model robustness, and demonstrate its benefits in the non-adversarial scenario by empirical evaluation of several models on the created datasets.
Data drift is the change in model input data that is one of the key factors leading to machine learning models performance degradation over time. Monitoring drift helps detecting these issues and preventing their harmful consequences. Meaningful drift interpretation is a fundamental step towards effective re-training of the model. In this study we propose an end-to-end framework for reliable model-agnostic change-point detection and interpretation in large task-oriented dialog systems, proven effective in multiple customer deployments. We evaluate our approach and demonstrate its benefits with a novel variant of intent classification training dataset, simulating customer requests to a dialog system. We make the data publicly available.
Semantic consistency of a language model is broadly defined as the model’s ability to produce semantically-equivalent outputs, given semantically-equivalent inputs. We address the task of assessing question-answering (QA) semantic consistency of contemporary large language models (LLMs) by manually creating a benchmark dataset with high-quality paraphrases for factual questions, and release the dataset to the community.We further combine the semantic consistency metric with additional measurements suggested in prior work as correlating with LLM QA accuracy, for building and evaluating a framework for factual QA reference-less performance prediction – predicting the likelihood of a language model to accurately answer a question. Evaluating the framework on five contemporary LLMs, we demonstrate encouraging, significantly outperforming baselines, results.
Similarity metrics for text corpora are becoming critical due to the tremendous growth in the number of generative models. These similarity metrics measure the semantic gap between human and machine-generated text on the corpus level. However, standard methods for evaluating the characteristics of these metrics have yet to be established. We propose a set of automatic measures for evaluating the characteristics of semantic similarity metrics for text corpora. Our measures allow us to sensibly compare and identify the strengths and weaknesses of these metrics. We demonstrate the effectiveness of our evaluation measures in capturing fundamental characteristics by comparing it to a collection of classical and state-of-the-art metrics. Our measures revealed that recent metrics are becoming better in identifying semantic distributional mismatch while classical metrics are more sensitive to perturbations in the surface text levels.