Sampritha Hassan Manjunath


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LUCE: A Dynamic Framework and Interactive Dashboard for Opinionated Text Analysis
Omnia Zayed | Gaurav Negi | Sampritha Hassan Manjunath | Devishree Pillai | Paul Buitelaar
Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations

We introduce LUCE, an advanced dynamic framework with an interactive dashboard for analysing opinionated text aiming to understand people-centred communication. The framework features computational modules of text classification and extraction explicitly designed for analysing different elements of opinions, e.g., sentiment/emotion, suggestion, figurative language, hate/toxic speech, and topics. We designed the framework using a modular architecture, allowing scalability and extensibility with the aim of supporting other NLP tasks in subsequent versions. LUCE comprises trained models, python-based APIs, and a user-friendly dashboard, ensuring an intuitive user experience. LUCE has been validated in a relevant environment, and its capabilities and performance have been demonstrated through initial prototypes and pilot studies.