Salvador Mascarenhas


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Meta-Learning Neural Mechanisms rather than Bayesian Priors
Michael Eric Goodale | Salvador Mascarenhas | Yair Lakretz
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Children acquire language despite being exposed to several orders of magnitude less data than large language models require. Meta-learning has been proposed as a way to integrate human-like learning biases into neural-network architectures, combining both the structured generalizations of symbolic models with the scalability of neural-network models. But what does meta-learning exactly imbue the model with? We investigate the meta-learning of formal languages and find that, contrary to previous claims, meta-trained models are not learning simplicity-based priors when meta-trained on datasets organised around simplicity. Rather, we find evidence that meta-training imprints neural mechanisms (such as counters) into the model, which function like cognitive primitives for the network on downstream tasks. Most surprisingly, we find that meta-training on a *single* formal language can provide as much improvement to a model as meta-training on 5000 different formal languages, provided that the formal language incentivizes the learning of useful neural mechanisms. Taken together, our findings provide practical implications for efficient meta-learning paradigms and new theoretical insights into linking symbolic theories and neural mechanisms.