Salma Kharrat


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ACING: Actor-Critic for Instruction Learning in Black-Box LLMs
Salma Kharrat | Fares Fourati | Marco Canini
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The effectiveness of Large Language Models (LLMs) in solving tasks depends significantly on the quality of their instructions, which often require substantial human effort to craft. This underscores the need for automated instruction optimization. However, optimizing instructions is particularly challenging when working with black-box LLMs, where model parameters and gradients are inaccessible. We introduce ACING, an actor-critic reinforcement learning framework that formulates instruction optimization as a stateless, continuous-action problem, enabling exploration of infinite instruction spaces using only black-box feedback. ACING automatically discovers prompts that outperform human-written prompts in 76% of instruction-induction tasks, with gains of up to 33 points and a 10-point median improvement over the best automatic baseline in 33 tasks spanning instruction-induction, summarization, and chain-of-thought reasoning. Extensive ablations highlight its robustness and efficiency. An implementation of ACING is available at https://github.com/salmakh1/ACING.