This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SajawelAhmed
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In this paper, we present a comprehensive tool of preprocessing Classical Arabic (CA) literature in the field of historical exegetical studies for machine learning (ML) evaluations. Most recent ML models require the training data to be in a specific format (e.g. XML, TEI, CoNLL) to use it afterwards for ML applications such as Named Entity Recognition (NER) or Topic Modeling (TM). We report on how our method works and can be applied by other researchers with similar endeavors. Thereby, the importance of this comprehensive tool of preprocessing is demonstrated, as this novel approach has no predecessors for CA yet. We achieve results that enable the training of current ML models leading to state-of-the art performance for NER and TM on CA literature. We make our tool along its source code and data freely available for the Natural Language Processing (NLP) research community.
Various historical languages, which used to be lingua franca of science and arts, deserve the attention of current NLP research. In this work, we take the first data-driven steps towards this research line for Classical Arabic (CA) by addressing named entity recognition (NER) and topic modeling (TM) on the example of CA literature. We manually annotate the encyclopedic work of Tafsir Al-Tabari with span-based NEs, sentence-based topics, and span-based subtopics, thus creating the Tafsir Dataset with over 51,000 sentences, the first large-scale multi-task benchmark for CA. Next, we analyze our newly generated dataset, which we make open-source available, with current language models (lightweight BiLSTM, transformer-based MaChAmP) along a novel script compression method, thereby achieving state-of-the-art performance for our target task CA-NER. We also show that CA-TM from the perspective of historical topic models, which are central to Arabic studies, is very challenging. With this interdisciplinary work, we lay the foundations for future research on automatic analysis of CA literature.
The Specialized Information Service Biodiversity Research (BIOfid) has been launched to mobilize valuable biological data from printed literature hidden in German libraries for over the past 250 years. In this project, we annotate German texts converted by OCR from historical scientific literature on the biodiversity of plants, birds, moths and butterflies. Our work enables the automatic extraction of biological information previously buried in the mass of papers and volumes. For this purpose, we generated training data for the tasks of Named Entity Recognition (NER) and Taxa Recognition (TR) in biological documents. We use this data to train a number of leading machine learning tools and create a gold standard for TR in biodiversity literature. More specifically, we perform a practical analysis of our newly generated BIOfid dataset through various downstream-task evaluations and establish a new state of the art for TR with 80.23% F-score. In this sense, our paper lays the foundations for future work in the field of information extraction in biology texts.