Sailesh Panda


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Char-mander Use mBackdoor! A Study of Cross-lingual Backdoor Attacks in Multilingual LLMs
Himanshu Beniwal | Sailesh Panda | Birudugadda Srivibhav | Mayank Singh
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

We explore Cross-lingual Backdoor ATtacks (X-BAT) in multilingual Large Language Models (mLLMs), revealing how backdoors inserted in one language can automatically transfer to others through shared embedding spaces. Using toxicity classification as a case study, we demonstrate that attackers can compromise multilingual systems by poisoning data in a single language, with rare and high-occurring tokens serving as specific, effective triggers. Our findings reveal a critical vulnerability that affects the model’s architecture, leading to a concealed backdoor effect during the information flow. Our code and data are publicly available at https://github.com/himanshubeniwal/X-BAT.