This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Said OuatikEl Alaoui
Also published as:
Said Ouatik El Alaoui
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Moroccan Dialect (MD), or “Darija,” is a primary spoken variant of Arabic in Morocco, yet remains underrepresented in Natural Language Processing (NLP) research, particularly in tasks like summarization. Despite a growing volume of MD textual data online, there is a lack of robust resources and NLP models tailored to handle the unique linguistic challenges posed by MD. In response, we introduce .MA_v2, an expanded version of the GOUD.MA dataset, containing over 50k articles with their titles across 11 categories. This dataset provides a more comprehensive resource for developing summarization models. We evaluate the application of large language models (LLMs) for MD summarization, utilizing both fine-tuning and zero-shot prompting with encoder-decoder and causal LLMs, respectively. Our findings demonstrate that an expanded dataset improves summarization performance and highlights the capabilities of recent LLMs in handling MD text. We open-source our dataset, fine-tuned models, and all experimental code, establishing a foundation for future advancements in MD NLP. We release the code at https://github.com/AzzedineAftiss/Moroccan-Dialect-Summarization.
AraBERT is an Arabic version of the state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) model. The latter has achieved good performance in a variety of Natural Language Processing (NLP) tasks. In this paper, we propose an effective AraBERT embeddings-based method for dealing with offensive Arabic language in Twitter. First, we pre-process tweets by handling emojis and including their Arabic meanings. To overcome the pretrain-finetune discrepancy, we substitute each detected emojis by the special token [MASK] into both fine tuning and inference phases. Then, we represent tweets tokens by applying AraBERT model. Finally, we feed the tweet representation into a sigmoid function to decide whether a tweet is offensive or not. The proposed method achieved the best results on OffensEval 2020: Arabic task and reached a macro F1 score equal to 90.17%.
Les systèmes de résumé automatique de textes (SRAT) consistent à produire une représentation condensée et pertinente à partir d’un ou de plusieurs documents textuels. La majorité des SRAT sont basés sur des approches extractives. La tendance actuelle consiste à s’orienter vers les approches abstractives. Dans ce contexte, le résumé guidé défini par la campagne d’évaluation internationale TAC (Text Analysis Conference) en 2010, vise à encourager la recherche sur ce type d’approche, en se basant sur des techniques d’analyse en profondeur de textes. Dans ce papier, nous nous penchons sur le résumé automatique guidé de textes. Dans un premier temps, nous définissons les différentes caractéristiques et contraintes liées à cette tâche. Ensuite, nous dressons un état de l’art des principaux systèmes existants en mettant l’accent sur les travaux les plus récents, et en les classifiant selon les approches adoptées, les techniques utilisées, et leurs évaluations sur des corpus de références. Enfin, nous proposons les grandes étapes d’une méthode spécifique devant permettre le développement d’un nouveau type de systèmes de résumé guidé.
This paper presents a description of the participation of the UPC-USMBA team in the SemEval 2017 Task 3, subtask D, Arabic. Our approach for facing the task is based on a combination of a set of atomic classifiers. The atomic classifiers include lexical string based, based on vectorial representations and rulebased. Several combination approaches have been tried.
Question answering, the identification of short accurate answers to users questions, is a longstanding challenge widely studied over the last decades in the open domain. However, it still requires further efforts in the biomedical domain. In this paper, we describe our participation in phase B of task 5b in the 2017 BioASQ challenge using our biomedical question answering system. Our system, dealing with four types of questions (i.e., yes/no, factoid, list, and summary), is based on (1) a dictionary-based approach for generating the exact answers of yes/no questions, (2) UMLS metathesaurus and term frequency metric for extracting the exact answers of factoid and list questions, and (3) the BM25 model and UMLS concepts for retrieving the ideal answers (i.e., paragraph-sized summaries). Preliminary results show that our system achieves good and competitive results in both exact and ideal answers extraction tasks as compared with the participating systems.