Sai Sandeep Sharma Chittilla


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
HuaAMS at SemEval-2022 Task 8: Combining Translation and Domain Pre-training for Cross-lingual News Article Similarity
Sai Sandeep Sharma Chittilla | Talaat Khalil
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our submission to SemEval-2022 Multilingual News Article Similarity task. We experiment with different approaches that utilize a pre-trained language model fitted with a regression head to predict similarity scores for a given pair of news articles. Our best performing systems include 2 key steps: 1) pre-training with in-domain data 2) training data enrichment through machine translation. Our final submission is an ensemble of predictions from our top systems. While we show the significance of pre-training and augmentation, we believe the issue of language coverage calls for more attention.