Sagnik Sengupta


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MixRevDetect: Towards Detecting AI-Generated Content in Hybrid Peer Reviews.
Sandeep Kumar | Samarth Garg | Sagnik Sengupta | Tirthankar Ghosal | Asif Ekbal
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

The growing use of large language models (LLMs) in academic peer review poses significant challenges, particularly in distinguishing AI-generated content from human-written feedback. This research addresses the problem of identifying AI-generated peer review comments, which are crucial to maintaining the integrity of scholarly evaluation. Prior research has primarily focused on generic AI-generated text detection or on estimating the fraction of peer reviews that may be AI-generated, often treating reviews as monolithic units. However, these methods fail to detect finer-grained AI-generated points within mixed-authorship reviews. To address this gap, we propose MixRevDetect, a novel method to identify AI-generated points in peer reviews. Our approach achieved an F1 score of 88.86%, significantly outperforming existing AI text detection methods.