Sagnik Banerjee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
A study of N-gram and Embedding Representations for Native Language Identification
Sowmya Vajjala | Sagnik Banerjee
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications

We report on our experiments with N-gram and embedding based feature representations for Native Language Identification (NLI) as a part of the NLI Shared Task 2017 (team name: NLI-ISU). Our best performing system on the test set for written essays had a macro F1 of 0.8264 and was based on word uni, bi and trigram features. We explored n-grams covering word, character, POS and word-POS mixed representations for this task. For embedding based feature representations, we employed both word and document embeddings. We had a relatively poor performance with all embedding representations compared to n-grams, which could be because of the fact that embeddings capture semantic similarities whereas L1 differences are more stylistic in nature.