This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SabineBartsch
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Graphs are a natural representation of complex data as their structure allows users to discover (often implicit) relations among the nodes intuitively. Applications build graphs in an ad-hoc fashion, usually tailored to specific use cases, limiting their reusability. To account for this, we present the Corpus Annotation Graph (CAG) architectural framework based on a create-and-annotate pattern that enables users to build uniformly structured graphs from diverse data sources and extend them with automatically extracted annotations (e.g., named entities, topics). The resulting graphs can be used for further analyses across multiple downstream tasks (e.g., node classification). Code and resources are publicly available on GitHub, and downloadable via PyPi with the command pip install cag.
In this paper, we present our systems submitted to SemEval-2021 Task 1 on lexical complexity prediction. The aim of this shared task was to create systems able to predict the lexical complexity of word tokens and bigram multiword expressions within a given sentence context, a continuous value indicating the difficulty in understanding a respective utterance. Our approach relies on gradient boosted regression tree ensembles fitted using a heterogeneous feature set combining linguistic features, static and contextualized word embeddings, psycholinguistic norm lexica, WordNet, word- and character bigram frequencies and inclusion in wordlists to create a model able to assign a word or multiword expression a context-dependent complexity score. We can show that especially contextualised string embeddings can help with predicting lexical complexity.
In this paper, we present MultiVitaminBooster, a system implemented for the PARSEME shared task on semi-supervised identification of verbal multiword expressions - edition 1.2. For our approach, we interpret detecting verbal multiword expressions as a token classification task aiming to decide whether a token is part of a verbal multiword expression or not. For this purpose, we train gradient boosting-based models. We encode tokens as feature vectors combining multilingual contextualized word embeddings provided by the XLM-RoBERTa language model with a more traditional linguistic feature set relying on context windows and dependency relations. Our system was ranked 7th in the official open track ranking of the shared task evaluations with an encoding-related bug distorting the results. For this reason we carry out further unofficial evaluations. Unofficial versions of our systems would have achieved higher ranks.